Answers to Course 3 Unit 2 Practice

2.	Figure Number	Number of Dots
	1	1
	2	3
	3	6
	4	10
	5	15
	6	21
	7	28

3. B

4. $\frac{n(n+1)}{2}$

5. B

LESSON 9-2

6. 10, 19, 28

7. Figure 4

8. 82 units; The perimeter is 10 units for the first figure and add 8 units more for each additional figure (since perimeter is the distance around the outside of a figure).

9. D

10. A

LESSON 10-1

11. -11

- **12.** C
- **13.** 15.75
- **14. a.** Inverse operations; subtract 9 from each side**b.** Inverse operations; divide by 5 on both sides.
- **15.** D

LESSON 10-2

16. A

- **17.** $x \ge 1$
- **18.** 23, 49 and 92
- **19.** B
- **20.** 14 feet, 70 feet and 91 feet

LESSON 11-1

- **21.** slope = 3; *y*-intercept = -2
- **22.** slope = -2; *y*-intercept = 3; explanations may vary: slope: for every unit increase in *x*, *y* decreases by 2; *y*-intercept: when x = 0, y = 3.
- **23. a.** 60
 - **b.** 0

c. D = 60w

d. \$1560

24. D

25. B

LESSON 11-2

26. D

27. a. $\frac{36}{3} = 12$

- **b.** 84 miles
- **c.** 4.5 hours
- **d.** Terrence finished first. Terrence rides 12 miles in 1 hour. Natalie rides 10.5 miles in 1 hour.
- **28.** a. Cassie: y = 12 + 8x; Margo: y = 9x
 - b. Cassie earns \$8 per hour so her slope is 8. She also earns \$12 to start, so her *y*-intercept is 12. The slope of Margo's line is 9, meaning she earns \$9 per hour. Margo's *y*-intercept is 0, so she does not have a starting amount.
 - **c.** Cassie earns more: 12 + 8(7) = \$68;Margo = 9(7) = \$63.

29. B

- **30. a.** Number of Hours
 0
 1
 2
 3
 4
 5

 Total Cost
 4
 6
 8
 10
 12
 14
 - **b.** The data are linear because the cost increases at a constant rate.
 - **c.** The slope is 2 and the *y*-intercept is 4.
 - **d.** y = 4 + 2h

LESSON 12-1

- **31.** A
- **32.** y = -4x; slope: -4; *y*-intercept: 0
- **33.** a. y = 10 + 4x
 b. slope = 4; *y*-intercept = 10
- **34.** C
- **35.** B

LESSON 12-2

36. B

- **37.** Graph A is steeper. Graph A has a slope of 4 and Graph B has a slope of 2. Since 4 > 2, the line on the left is steeper.
- **38.** C
- **39.** The equation has a greater rate of change. The rate of change of the data shown in the table is 2. The slope of the linear equation shown is 4.

40. a. slopes are
$$\frac{2}{3}$$
, 1 and 3
b. $y = 3x - 1$

LESSON 12-3

41. slope = -5; *y*-intercept (0, 3)

42. B

44. A

c. y = 280 - 40x

d. The slope is -40 and the *y*-intercept is (0, 280).

LESSON 13-1

46. Archery Club

Lessons	1	2	3	4
Cost (\$)	8	16	24	32

Recreation Center

Lessons	1	2	3	4
Cost (\$)	19	23	27	31

47. a. y = 8x

b. y = 15 + 4x

48. a.

- **49.** a. A **b.** B
- **50.** It will be cheapest for Jermaine to take his archery classes at the archery club if he takes less than 4 classes. If he will take more than four classes he should take them at the recreation center.

LESSON 13-2

- **51. a.** Yes, if the number of weeks are doubled, the number of miles she swims will be doubled as well.
 - **b.** No, the equation for this situation is y = 0.50x + 5. This is not in the form y = kx.
 - **c.** No, the equation cannot be written in the form y = kx.
- **52.** Aida; this is not a direct proportion. The graph does not pass through the origin.

53. C

- **c.** Yes, the equation is written in the form y = kx.
- **d.** 2.18 hours

55. C

LESSON 14-1

56. D

X	<i>y</i> ₁	y ₂
-2	-12	-9
-1	-9	-7
0	-6	-5
1	-3	-3
2	0	-1
3	3	1

57. Answers will vary. Sample answer given.

The solution is (1, -3).

59. A

- **60. a.** K = 6w + 4
 - **b.** E = 5w + 12
 - **c.** Week 8; Explanations will vary but should note that when w = 8, both accounts will have \$52.

LESSON 14-2

61. C

- **62. a.** No solution; Explanations will vary; the equations are the same except for the constant term, and no two numbers can add up to both 6 and 12; the equations have the same slope and different *y*-intercepts so they are parallel lines.
 - b. There are infinitely many solutions;Explanations will vary; these are equivalent equations—if you solve the first equation for *y*, you get the second equation.

64. D

65. (1, 2); explanations will vary; a table of values shows that at *x* = 1, both *y*-values are 2.

LESSON 15-1

66. B

67. (-3, 5)

- **68.** D
- **69.** Sample answer: If the substitution method results in an equation that is always true, the equations would be the same line.
- **70.** Answers will vary; Sample answer: 2x 3y = 18-x + y = -7

For each equation, I selected coefficients for *x* and *y*. Then, I substituted the value of 3 for *x* and the value of -4 for *y*, and evaluated the sum on the right side of each equation.

LESSON 15-2

71. bagels = \$9; cream cheese = \$4.50

72. C

73. 41 quarters and 34 dimes

74. B

75. adult ticket = \$11; child ticket = \$5